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Abstract: In this paper, singularly perturbed nonlinear differential/algebraic equations 

(DAEs) are considered and a proof of the existence and uniqueness of a solution is given. 

Asymptotic expansions for such a solution are obtained and proved to be uniformly conver- 

gent. This generalizes known results about asymptotic expansions of singularly perturbed 

ordinary differential equations. 
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1. Introduction 

We consider the asymptotic behavior of solutions of a singularly perturbed DAE of the 

form 
x' = S\{x,y,z,t) 

ey' = ft(x,y,z,t) (1.1a) 

0 = /3(*,y,2,e) 

together with the initial conditions 

*(0,e) = «e),   y(0,e) = *,(€),   *(0,e) = <(e) (1.16) 

where x £ Rm, y € #", z G Rk and c € i?1. It might be expected that the theorems 

developed for singularly perturbed ODEs can be used to study the singularly perturbed DAE 

(1.1). For this it would be natural to apply a standard index reduction to (l.la,b); that is 

to reduce (l.la,b) to a singularly perturbed ODE by differentiating the constraint equation 

/3(x(t,e),y(f, e),3(<,e),c) = 0 with respect to t along any solution (x(t,e.), y(t,e), z(t,e)) 

of (l.la,b). Then by applying the known theory for singularly perturbed ODE's (see [Ho] 

or [OM2]), we might expect to obtain the desired results for the singularly perturbed DAE 

* This work was supported in part by ONR-grant N-00014-90-J-1025, and NSF-grant CCR- 

9203488. 



(l.la,b). But this is not the case. In fact, by differentiating the constraint equation in the 

system (l.la,b) with respect to t along the solution (.r(r, e), y(t, e), z(t, e)), we obtain 

cy' = h{x,yyz,t), 

«' = -(»J.lt.j.vir'I.BJälr.V.vl/id,»,.-,«), (1.2) 

+ Dsf3(x, y, z, f)Mx, y, «,«)), 

i(0,e) = «M,   y(0,c) = ^(0,   »(0,£) = C(€). 

For e — 0, the reduced problem for (1.2) then has the form: 

x' = /i(*,y,z,0), 

0 = Mx,y,z,0), (1.3) 

i(0) = tfO). 

This reduced system has lost A: constraint conditions which means that the assumptions of the 

theorems in [Ho] or [OM2] for singularly perturbed ODEs are not satisfied. Therefore, we have 

to study the singularly perturbed DAE (1.1) directly. 

Under certain assumptions, we prove that (l.la,b) has a unique solution on the interval 

[0,T] for all small c, for which asymptotic expansions have been obtained and proved to be 

convergent uniformly in [0,T]. 

As background for the presentation, Chapter 2 below presents a summary of some known 

existence results for DAE's, which can be applied to (1.1) and its reduced system. 

Chapter 3 addresses the limiting problems in which the reduced problem and the inner 

and outer problems for (1.1) are introduced, and the regular degeration of (1.1) is defined as 

well. 

While asymptotic expansions and existence of the outer solutions are considered in Chapter 

4 and 5, respectively, inner solutions of (1.1) are studied in Chapter 6 and 7. 

2. Background on DAE's 

To ensure the existence of solutions of (1.1), we impose the following assumption on the 

system 

Assumption (I): There are non-empty open sets V, C Rm, T>y C It", T>t C Rk and J, C 

R], J, = { f I H < (', (' > 0}, such that the mappings /, : V x J< -> R'", f2:VxJ(-> R", 

/,:I)xJ^R',(: J, -. V,, n : J, -» Vy and C, : J, -* Vz, where V = Vt x V „ x Vt, are 



continuous on the indicated domains. Moreover for fixed e e Jl; /i, f2, fz are of class C°° on 

V and the initial point (£(e), n(e), C(e)) satisfies the compatibility condition 

/»(««). >K0. CM. 0 = 0- 

Finaliy, assume that /2(z,y, z,0) ^ 0 and fz(x,y, z,0) ^ 0 in the domain O, and that the 

Jacohian matrix 

DJ3(^o,Vo,Co,0) (2.1) 

is nonsinguiar, where £0 = ?(0), Vo = >/(0)> Co = ((")• 

The infinite differentiability of /1, f2, fz is assumed here only for the sake of simplicity. 

We are interested in the existence of solutions of (l.la,b) on some interval [0,T] where T is 

independent of e, and with the asymptotic behavior of the solutions of (l.la,b) as t tends to 

zero. For these asymptotic considerations some further conditions will be needed which will 

be stated in the next subsection. 

For the existence of solutions of (l.la,b) the condition (2.1) in Assumption (I) ensures the 

solvability of (l.la,b). Indeed, from (2.1) it follows that there exists an e' > 0 (e' € J,) such 

that 

£./»(««). «K«). CM.«) 

is nonsingular for any fixed e, 0 < e < e' . This implies that the system (l.la,b) is a DAE of 

index one in some neighborhood of ({(e), >)(e), C(e))- 

The existence and uniqueness of a solution of (l.la,b) will be based on the following 

existence theorem for the solutions of initial value problem of the form: 

u' = Fi(u,v), 

0 = F2(u,u), (2.2) 

u(0) = uo,    v(0) = vo, 

Proposition 2.1: Suppose that the mappings F, : X>„ xVv C Rr+a -» Rr and F2 : T>u x£>„ C 

Rr+' —> R3 are of class C1 on their domains where Vu C Rr and T>v C R' are non-empty open 

sets, and that the initial point (u0,i>o) E P« X 5, satisfies 

F2(u0, i>o) = 0, 

and the Jacohian matrix 

DvF2(u0,v0) 
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is nonsingular. Then there exists a C1 -solution (u(t),v(t)) € I>„ x Z>,, of (2.2) whicli is unique 

on some interval [0,%], T0 > 0. Moreover, the component u(t) is of class C2 on [0,r0]. 

Proof: The result is a consequence of the existence theorem for DAEs of the form (2.2) given 

in see [Rh4],   | 

By applying Proposition 1.1 to (l.la.b), we obtain the following existence theorem: 

Proposition 2.2: Under assumption (I), for any fixed ( > 0 (f < (' e J,), there exists a 

unique solution (x(t,t),y(t,e),z(t,f)) for the DAE (l.la,h) on some interval [0,Tt], where T, 

depends on t. 

3. The boundary problems 

In order to study the asymptotic behavior of solutions of (1.1), we formally set t = 0 in 

(1.1a) and remove the initial conditions for y and z, and then obtain the system 

A'; = /,(X0,yo,Zo,0), 

0 = /2(A'„,Vo,Zo,0), (3.1a) 

o = /3(-Y0,y0,z0,o), 

with which we associate initial conditions of the form 

*o(0) = £o,     Ko(0) = ro
0,     Z0(0) = Z°. (3.16) 

Thus we obtain from Proposition 1.2 the existence residt: 

Proposition 3.1:   Under assumption (I) let (Z0,Yg,Z$) 6 P, (, = £(0), be a point such that 

/^„,1'0°,Z0°,0) = 0, 

/3(6>,>'„ü,z",o) = o 

und that tho. matrices 

DJ3(teX,ZlO) (3.2a) 

B°=D„MZ<,,Y0°,Z°,tt) 

-ö./»(fo,y„0,Z„°,0)(Z)I/3(fo,y„0,Z„0,0))",£»l,/3(eo,ro
0,Z0

0,0) 

are nonsingular. Then the system (3.1) has a unique solution (A'0((), Y0(t). Z0(t)) € V on 

some interval [0,T], which satisfies the initial condition (3.1b). Moreover, for t e [0,T] the 

matrices 

DJ3(Xa(t),Yu{t),Zo{t),0), (3.3a) 
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B(t)=Dyf2{t„,Yo(t),Z„(t),0)-D,fi(t„,Y„(i),Zo(t),0) 

(£>2/3(eo,^(<).-Zo(<),0)r1Z)!,/3(6,>'o(<),2o^},0) 

are nonsingujar. 

Proof: Since the matrices (3.2a/b) are nonsingular, there exists a neighborhood Os C T> of 
the point (f0, Y§,ZQ) such that for all (x, y, z) € Os the matrices 

£>z/3(x,y,z,0), 

Dsf2(x,y, z,0) - flj2(r,y, z,0)(BJifi, y,z,0))-1 ZVaOr,y,z,0) 

are nonsingular. This implies that the Jacobian matrix 

( 
Dsf2(x,y,z,0)    DJ2(x,y,z,0) 
Dyh(x,y,z,u)    DJ3{x,y,z,0) (3.4) 

is nonsingular in Os, as follows directly from the identity 

(Dyf2 D,h\ 
\Dyh D,h) 

= (Imxm    Dth(D,h)-l\(Dt}2-D,h{D,h)-lDvh       0    N 
V    0 hxk ) \ D,h DJ3) ■ 

Then a direct application of the Proposition 2.1 to the system (3.1a/b) shows that this system 
has a unique solution (X0(t),Y0(t), Z0{t)) G Os 6 V on some interval [0,T]. Since for all 
t G [0, T], the solution (X0(t),Yo(t), Z0(t)) remains in Os, the matrices 

DJ3(X0(t),Y0{t),Z0(t),0)     andB(t) 

are nonsingular for all t € [0, T].   | 

Our aim will be to determine when there arc solutions of (1.1) that converge for e —► 0 to 
a solution of the reduced system (3.1). For this we introduce the following concept: 

Definition 3.1: The system (l.la,b) is said to degenerate regularly on the solution (X0(t), 
Y0(t), Z0(t)) of (3.1), 0<t<T, if a solution (x(t,e),y(t,e),z(t,e)) of (1.1) exists on the same 
interval 0 < t < T, which converges to (Xo(t),Yo(t),Zo(t)) as e —► 0, uniformly on compact 
subsets of 0<t <T. 

The structure of regularly degenerating solution of (l.la,b) is determined by replacing 
problem (l.la,b) by two auxiliary problems; the first of these is called the outer problem, and 
the second one the inner problem. 



The critical idea is here to consider (1.1a) with only an intial condition for x but with the 

explicit assumption that only solutions are admitted which for e = 0 reduce to a solution of 
(3.1). In other words, we consider the problem: 

with some initial condition 

A" = /,(A\y,Z,f), 

0 = /3(X,r,2,e), 

*(0,f) = n0 
und the limiting assumption 

X(t,0) = *„«), Y(t,0) = Yo(t), Z(t)0) = Zo(t) 

(3.5a) 

(3.56) 

(3.5c) 

wli«r<: {X0(t),Y0{t),Z0(t)) is a solution of (3.1). 

Any solution of (3.5a,b,c) will be called an outer solution. With any such outer solution 

(X{t,e),Y(t,e),Z(t,c)) we introduce in (1.1a) the scaled variable 

and new dependent functio 

■ = «/* 

Q(r, f) = l((T, f) - X((T, () 

ß(Tt() = y((T,t)-Y(er,() 

7(7-, t) = z(tr, t) - Z((T, c) 

(3.6a) 

(3.G6) 

Let (x(t,t),y(t,c),z(t,e)) be a solution of (l.la,b), then we find that (a,ß,-[) satisfies the 

following DAE, which is called the boundary layer problem or inner problem: 

da 
■fa =f/i («",«,/?, 7, f), 

dfl 

dr 
■■ f2{cT,a,ß,-/,() (3.7a) 

0 = /j(£T,«,/3,7,f), 

«*(0,e) = f(e)-r(«), «0,e) = i)(€)-r(0,e), 7(0, f) = C(e) - 2(0, e), 

where 
fi(t, a, /3,7, e) = /,(« + ,Y(r, c), ß + Y(t, e), 7 + Z(t, «), e) 

- /,(X(t, t), K(i, f), Z(t, e), f),   i = 1,2,3. 

To study the asymptotic behavior of solutions of (1.1), we need following assumption 

(3.76) 



Assumption (II):  Tie components of the initiaJ point (£(e),»;(e),C(e)) possess asymptotic 

expansions : 

oo oo oo 

£W ~ E«'e'> "»(0 ~ E1^' ««) ~ E^ as e -. 0. (3.8) 

4. Asymptotic expansions of outer solutions 

For the analysis of the solutions of (3.5a,b) and (3.7a,b) and their interrelationship, asymp- 

totic considerations are to be used. We motivate here briefly the approach and defer proofs to 

the next subsection. Suppose that the initial function {"(e) of (3.5b) satisfies 

oo 

and accordingly that any outer solution (X(f, e), Y(t, e), Z(t, e)) has a formal asymptotic ex- 

pansion in terms of e 

N 

X(t,e) = Y,Xi(t)e
i + 0(eN+1)     as e -> 0 

i=0 
N 

r(r,e) = ^yi(t)e
i + 0(eN+1)     as e -» 0 (4.16) 

t=0 

N 

Z(*,e) = Ezi(*y + 0(ew+1)     ase->0, 

which is assumed to hold uniformly for 0 < t < T, 0 < e < ei (ei < e'). 

Inserting (4.1b) into the equation (3.5a), expanding the right side functions at the point 

(Xo(t),Yo(i), Zo(t),0) and equating coefficients of equal powers of e, we obtain that the first, 

term (Xo(t), Y0(t), Za(i)) must be a solution of the reduced problem (3.1a.b) while the higher 

terms (Xr(t), Yr(t), Zr(t)), r = 1,..., N in (4.1b) must satisfy a linear DAE of the form 

^ = fi,(t)Xr + h,(t)Yr + fUt)Zr +Pr(t), 

~- = h*{t)Xr + h»(t)Yr + h,(t)Zr + qr{t), (4 2)r 

0 = f3t(t)Xr + hy(t)Yr + f3,(t)Zr + rr(t), 

*r(0) = Cr, 



when: 

Mt) = £>I/,-(x„«),y„(o,Zo(/),o), 
fiv(t) = D„fi(X0(t),Yo(t),Zo(t),0), 

/„(<) = DJ,(Xo(t),Y0(t),Zo(t),0), 

1,2,3. (4.3) 

A'r-i, Yr-UZr-i for and the terms pr(t),qr(t) and rr(() are polynomials in Xi,Yi, Z 

which the coefficients are higher derivatives of the functions /i./j./a at the point (A'0(/), 

Yo(t), Zu(t),0). The right side £* of the initial condition is the corresponding coefficient in 

the asymptotic expansion of f *(e) and pr, gr and rr, r = 0,1,..., Ar, are obtained recursively. 

Therefore, (pr(t),qr{t),rr{t)) is well defined on the interval 0 < t < T if the previous terms, 

Xi,Yi,Zi,..., Xr-\, Vr-i, Zr-u are well defined on [0,T], A comparison of (4.2)r shows that, 

formally, all coefficient functions satisfy a linear system of the form 

dt 
= au{t)x + au(t)y + a13(t)z + 6,(t), 

0 = a-n{t)x + ar2{t)y + a23{t)z + b2(t), 

0 = a3l(t)x + a32{t)y + a13(t)z + b3{t), 
(4.4) 

for which 

(a) «,j,fti are continuous on [0,T]; 

(b) the matrix 

Mt)- /a22(0    a23( 
Ka32(t)    a33( 8) 

is nonsingular for t 6 [0, T]. 

For such systems we obtain from Proposition 2.1 the existence result: 

Proposition 4.1: Under the assumptions (a) and (b) the system (4.4) has exactly one solution 

(x(t),y(t),z(t)) defined on the interval [0,T]. 

Proof: By assumption (b) we can solve the second and third equations in (4.4) for (y,z) in 

terms of x substitute into the first equation in (4.4). Thus, we obtain an initial value problem 

for a linear ODE. Then applying the basic existence theory for ODE's (see Theorem 5.2 in 

[CoLe]) we know that the system (4.4) possesses a unique solution.    | 

Since the informal expansion procedure provides that pr(t),qr(t), rr(f) are polynomials 

in XuYuZi, ..., A'r_,(r),J<V_,(r),Zr_,(t) with the coefficients depending on (A'0((), Y0(t). 

Z0(t)), we can verify easily that the conditions (a) and (b) for the linear system (4.4) will hold 

for all systems (4.2)r, r = 1 N. Then by applying Proposition 2.1 to these systems (4.2),-, 

we obtain the following existence theorem: 



Proposition 4.2:  If the conditions in Proposition 3.1 hold then each system (4.2)r, r = 

1,..., JV, with any given value of£*, has a unique solution (Xr{t), Yr(t), Zr(t)) defined on the 

domain [0,T] of (X0(t), Y0(t), Z„(t)). 

Proof: For any r, 1 < r < JV, the coefficient matrix in the system (4.2)r , 

U»(«)   Mi))' 
is nonsingular for all t 6 [0, T] due to the nonsingularity of B(t). Hence by Proposition 4.1, we 

find that the system (4.2)r has a unique solution defined on the interval [0, T].   | 

Note that, although the sequence of systems (4.2)r is derived formally under the hypothesis 

that their solutions (Xr(r),Yr(i),Zr(r)), r = 0,1,... ,/V, are the coefficients of the expansion 

series of an outer solution (X(t,e),Y(t,e),Z(t,e)) of (l.la,b), these systems (4.2)r themselves 

are independent of the concept of an outer solution. So far, we only proved the existence and 

uniqueness of the systems (4.2)r. Obviously, this does not mean the existence of an outer 

solution. But motivated by the procedure used in the derivation of the systems (4.2)r, wc may 

exploit the solutions (Xr(t), Yr(t), Zr(t)), r = 0,1,..., N, to construct an outer solution. This 

will be discussed in the next chapter. 

5. Existence of outer solutions 

This chapter concerns the existence of an outer solution of the outer problem (3.5a,b,c). 

We cite the following Lemma which plays an important role in the study of singularly perturbed 

ODE's. 

Lemma 5.1: Let A(t) be an n by n continuous matrix for t0 < t < <i and let the real parts 

of all its eigenvalues be less than — p on t0 < t < tj for some fi > 0. Let <j>{t, s, e) be the 

fundamental solution of 

4=A(t)X 
1nXn X(s) = /„ 

on t0 < t < ti for some s ont0 < s < tj. Then there exists a constant K, which is independent 

of e, such that 
||^(t,S,e)||<A'e-"(,-8)''2e 

for t0 <s < t <*i. 

For the proof see,e.g. [Le]. 

For the theory, we require further assumptions about the solution (-Xo(t), Y0(t), Z0(t)) of 

the reduced system (3.1a,b). 



Assumption (III): Proposition 3.1 holds and for any t 6 [0,T] all eigenvalues of the matrix 

B(t), defined in (3.3b), remain strictly in the left half plane. 

In the previous chapter we formally derived the systems (4.2)r by assuming that an outer 

solution (X(t,f ),Y(t>(), Z(t, ()) has an expansion of the form (4.1b), and we obtained exis- 

tence and uniqueness results for solutions (Xr(t),Yr(t),Zr(t)) of (2.3)r, r = 1,...,AT. The 

following theorem shows that these solutions (Xr(t)yYr(t), Zr(t)) can be used to construct an 

approximation of an outer solution (X(t, e), Y(t, e), Z(t, e)). 

Theorem 5.1: Under Assumptions (I) - (III) and for any given £*, r — 1,..., N, there is a 

constant efi > 0 (V() 6 Jt) such that the outer problem (3.5a,h,c) has for any f, 0 < e < f0 

a solution X = X(t, e), Y = Y(t, e), Z = Z(t,c) € V, defined on the same interval [0,T] as 

{X0(t),Y0{i),Z0{t)), which satisfies 

N 

x(^,f)-^-V,(*K = o(e'
1'+,), 

i=0 
N 

Y{t,c)-Y^Y.(ty = 0{<N+l), tLif-vO (5.1) 
i=0 

N 

Z(t,t)-YJZ,(t)f' = 0(eN+'), 
t=0 

uniformly forO <t <T. 

[Proof] To begin the proof we simplify the outer problem (3.5) by introducing a change of 

variables defined by the affine mapping 

T,:Rm x IT xRk - Rm xiT x Rk;   T,(u,v,w) = (A',1',Z), 

N 

A- = « + ^Xr(()f
r, 

r=0 
W 

Y = v + ^Yr(t)e
r + A1(t)u, 

r=0 
N 

Z ="' + 5Z z-(')fr + ^W" + Sl(')"- 

(5.2a) 

(5.26) 

Here A\,Ä2 and 2?i are chosen as 

AAt) = ß(«)"'(/2.«)(/3S«))"73x(0 - /2,(0), 

A2(() = -(/3:(()r73B(«M.(<) - (f>At))-lhAt), 

B1(t) = -(f,At))-,f„(t), 

10 
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where B(t) is defined in (3.3b). Since the domain of the functions fi(x,y,z,e), f2(x,y,z,() 

and fz(x, y, z, e) is V X Jf, we require that the new variables (u, v, w) remain in some suitable 

domain such that the range of the mapping Tt belongs to V for all 0 < t < T and 0 < e < «i, 

where ei 6 Jt is sufficiently small. In order to find such a domain for T< it is important to 

note that (Xo(t),Yo(t), Zo(t)) is an interior point in V for any t e [0,T]. In fact, since (5.2b) 

can be written as 

X = X0(t) + u + f^Xr(i)e
r-1)e, 

Y = Ya(t) + v + A,(t)u + Hr Yr(ty~l) «, (5-4) 

Z = Z0(t) + A2(t)u + B!{t)v + w + I J2 Zrity1 ) e. 

and (Jfr(t),yr(t), ZT(i)), r = 1,..., JV, Ai(t), A2(t) and Bi(t) are uniformly bounded in <, 0 < 

t < T, it follows from (X0{t),Y0(t), Z0(t)) € int {V) V< € [0,T] that there exist positive 

numbers ei (< e0 e Jt) and S such that T,(u,v,w) E T> for any given t, t € [0,T] and for all 

(u,«,u>) € B(0,S) x B(0,A) x 5(0,6). Accordingly, for 

V = D„ x t>„ x P„, 

D„ = 5(0, S)cRm,   Vv = B(0, S)cR",   Vw = B(0,6)cRk, 

we have T,(V) C £> for all 0 < t < T. 

Substituting (5.2b) into the first equation of (3.5a) we obtain that 

du     x-^ dXi(t) ; 

dt      ^     dt 
1=0 

N N 

= h(X0(t) + « + 5Z- yo(0 + v + 4i(i)u + Y, Yi(ty, (5.5) 

Z0{t) + w + A2{t)u + B^t)« + Y^ Zi{t)e\t). 

We introduce the Taylor expansion of fi at (X0{t), Y0(t), Z0(t), 0) . For this the abbreviations 
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will be used 

A*) 

I    l 0 0 0\ 

■4,(<)       / 0 0| 
A-2{t)   B,(t) / 0 I • 

\    0 0 0 1/ 

/XB(t)\ /u\ 

«•(')= I Jgjl. «= , *¥<) = V,(*) 
z.(0 (5.6) 

C.Y\ 

:Q0(*) + A')^ + Xlfi'(')6'' 

vhere <5jtr is the Kroncckcr delta. Then the expansion of /i(fi) at Qo(t) has the form 

N N 

= /i(fio(<)) + £ -fO(r,/i(no(())(E «,(0t')r + Dh«lo(t))A(t)U I 
r=l 1=1 (5.7) 

r=2     ' t':=l i=l 

where G(/, u,u,io, e) is the remainder term.   Obviously, G(t,u,t>, u>, e) satisfies the following 

Condition (N) 

Definition 5.1:  A C1-function F(t,u,v,in,f) :  Rx Rm x Rn x Rk x R -> R> is said to satisfy 

the Condition (N)   if it satisfies the following asymptotic relations: 

(0 
F((,0,0,0,e) = O(f'v),        ase->0; 

uniformly for 0 < t <T, where N is a positive integer; 

(») 
DuF(t,u,v,w,e) = 0(t + \u\ + \v\ + \w\) ■) 

DvF(t,u,v,w,t) = 0(( + \u\ + \v\ + \w\)   I       asc,|u|,|i>|,|u>| -» 0 

D„,F(t,u,v,w,e) = 0(t + \u\ + \v\ + \w\) J 

uniformly for 0 <t <T. 

It is noticed that the Condition (N) is the same conditions as (1.2a) and (1.2b) in Hy- 

pothesis (H) in [Ya2]. Observe that 

= £>,/, (»„(*))« + /)»/i(fi1.«))(« + Mt)u) + DJAH»(t))(w + A2(t)u + B,(t)v) 

= (DJ,(iMt)) + Dsfl(Cl0(t))Al(t) + DJ1(n„(t))A2(t))u+ 

(D„/,(Qo(<)) + D</i(SW<)B,(0)" + DJ,(n0(t))w 

(5.8) 
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where 

£ji><r»/i(no(0)(£>(0«')r 

= E>,r,/.(n.(0)  E   (n^wW' 
r=l     ' k,,...,kr = l   \J=1 / 

JV 

= ^6,(<)6S+fiN(<,€) 

*■(') = Ejfl(r)/i(no(*))    E     (nn*>C) 

and Äw(t, e) = 0(ew+1) is independent of (u, v, w). Since (X,(t), Y,(t), Z,(t)), s = 0,1,..., JV 
satisfy 

where b0(t) = /i(J2o(0)> >* follows from (5.5,6,7) that 

^ = (Dx/^QoW) + ö»/i(fio(OMi(0 + ö,/i(fio(<))A2(t))«+ 

(ß„/i(fio(<)) + ^/iCfioWßiCO)« + DJ^iWt))™ + RN(t,e) 

+ E ^<r)/i(no(*))t(^(*)w + En'(o«')r - (En«w«')n       (5-9) 

r=2 i=l 

+ G(i, u,», u), e) 

= Ci(t)u + L-i{t)v + Ei(t)w + Fi(t, u, v, w, e) 

where 

L1(i) = Z>,/](n„(*)) + Ds/1(JJoW-BiW. 

£i(0 = ß,/j(fio(<)), 
N N JV 

Fi(t,u,v,w,e) = X] 4D(r)/1(fioW)[MWW + E"'Wf")r " (E"-(*)f')r] 

+ fljv(r, e) + G(r, u, t>, w, e). 

Obviously 

Äjv(t,0 
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and 
N    . N N 

satisfy Condition (N). Since also G satisfies Condition (N), this implies that Ft satisfies 

Condition (N) as well. 

Now substitute (5.2b) into the second and third equations of (3.5a) and expand f2, f3 

at (X0{t), r„(<), ZoW.O)-  Then, because {X,(t), Y,{t), Z,(t)), i = 0,1 Ar, are solutions 

of (4.2);, we obtain two further equations which, with (5.9) form the the following system 

equivalent to (3.5) under the mapping %\ 

du 

~di ~~ 
du 

0 = 

■ Ci(i)u + L1(r)i> + Ei(t)u' + .F1(i,u,t>,ti>,(0 

B(t)v + E2(t)w + F2(t, u, i), !/•, f) 

E3(t)w + F*(t,u,v,ir,e) 

N 

u(0,0 = «*(0 - £{,V = MO = 0(eN+1) 

(5.11) 

£2(*) = DJ2(Q0(t)),      E3(t) = D,/3(no(0, 

and F; and F3 satisfy Condition (N). Note that in the derivation of the last two equations 

of (5.11), we used the fact that 

Dzf2(Sl0(t)) + D,/2(n„(t))^,(0 + DJ2(ü0(t))A2(t) = 0, 

D.MHoW) + D,f3(il0(t))A,(i) + DJ3(Q„(t))A2(t) = 0, 

D,f3(il0(t)) + D1f3(ile(t))B1(t) = 0, 

(5.12) 

and 

D,MH0(t)) + D.MSloWDAt) = 5(0 

where B(t) is defined in (3.3b).With the notations (5.6) this is equivalent with 

Df2((l0{t))A(t) = (0,B{t),DJ2(Q0(t)),D,Milo(t))), 

DMSl0(t))A{t) = (0,0,DJ3[il0{t)),D,f3(ilo(t))). 

In other words, from the defining relation (5.3) we find that Ai(t), A2(t) and Si(() solve (5.12). 

If we can show that there exists a solution (u(r,e), v(t,c), w(t,e)) € Z> of the system (5.11) 
which satisfies 

u(r,e) = 0(6N+1), v(t,() = 0(cN+1), w(t,f) = 0(f
N+'),     as t -. 0 
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uniformly for 0 < t < T, then Theorem 5.1 is proved. But note that we need only the existence 

of a solution of (3.5) without requiring its uniqueness. Hence instead of (5.11) we consider the 

constrained system of integral equations 

u(t,e) = $(t)(8N(e)+ I ^(s^Liis^s^) + £,(s)u;(s, e) 
JO 

+ F1(s,u(s,e),v(s,e),w(s,e),e))ds) 
(5.14) 

t  *(i s e) - 
v(t,e)=  I '    (Ei(s)w(s,e) + F2(s,u(s,e),v(s,e),w(s,e),e))ds 

Jo e 

w(t, e) = -(Esit^Fsit, u(t, e), v{t, e), w{t, e), e) 

where $(r) satisfies 

2M = C,(i)*(t).     0<<<T 

$(0) = / 

while 9(t,s, e) is the solution of the following system: 

d*      1 
=i- = -B{t)<i,     0<s<t<T 
dt       e 

<Z(t,s,e)\t=, = I. 

Note that the system (5.14) is not equivalent with the system (5.11). But, obviously, if (u(t, e), 

u(t, e), w(t, e)) G T> solves (5.14), then it solves (5.11) as well. Thus if we can prove that (5.14) 

admits a solution which satisfies the asymptotic relation (5.13), then we are done. We will use 

the theorems in [Ya2] to prove this existence. 

By Assumption (III) there exists a positive number \i such that 

K(A(B(i))) < -p. 

for all eigenvalues of B(t), 0 < t < T. Then Lemma 5.1 ensures the existence of a constant K, 

which is independent of e, and such that 

|*((,s,e)|<Jfe""V^,    0<s<t<T. 

With the notations 

0!(M) = *MMO,   02(M) = O,   Gj(M,e) = $(<)$"' (s)I,(s), 

H,(t,s,e) = ^(t)^-1(s)E,(s),   K(t,s,e) = *(t,s,e)E2(s), (5.15) 

F1=^(i)^-\s)Fl,   F2 = F2,   F3 = -E^(t)F3, 

(5.14) can be written in the form of constrained systems of integral equations as the one 

in [Ya2], and evidently the Hypothesis (H) in [Ya2] are satisfied.  Therefore by the results of 
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Theorem 1, 2 in [Ya2], (4.13) has a unique solution (u{t, e), v{t, e), ^(/, ()) € V, for all # € [0,T] 

and 0 < 6 < f2 ( < fi) that satisfies (4.12). Therefore, under the transformation (4.1), {X(t, e), 

Y(t,e), Z(t,e)) remains in T> for all t G [0,T] and 0 < 6 < e2 
and is an outer solution which 

satisfies the asymptotic relations (4.1b). This completes the proof of Theorem 5.1.   | 

6. Asymptotic expansion of inner solutions 

6.1. Formal derivation of asymptotic expansion of inner solutions. Now to proceed 

to the inner system, by using Assumption II, for the initial conditions a(0, e), ß(0, e), 7(0, e) 

in (3.7a) we must have 

N 

a(0, t) = «f) - HO = £(£' - t')(i + °(f W+1), 
i-l 

/3(o, f) = ,(6) - r(o, 6) = ][>, - y,(o)K + 0(e
w+l), (6.1) 

i=0 

N 

7(0,6) = C(c) - Z(0,e) = £«, - Z,(0))f' + 0(6W+1). 
i=0 

Then, formally, we expect the solutions of (3.7a) to satisfy asymptotic relations of the form 

N 

«(r,6) = ^r,,(r)f" + 0(f
w+1) 

1=0 

N 

ß(r,e) = ^ß,(Ty + 0(eN+i) (G.I 
1=0 

N 

7(T,e) = ^7.(T)6' + 0(6'v+1) 

which should hold uniformly for 0 < r < Tjt. 

We will substitute (6.2) into (3.7a), expand right sides at (Xo(0) + O0(T), Vo(0) + ßo(r), 

2o(0) + 7O(T")) and collect terms with equal powers of 6 to obtain the equations which (o,(r), 

ßi(T)> 7i(r)) must satisfy. Since the expansions of the right sides in (3.7a) involve very tedious 

derivations, we set for abbreviation 

/a(r,c) + X((T,()\ /A'(6T,6)\ 

(  '   ' 7(r,6) + Z(6r,6)     'W)-      Z(er,()     ' 
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Then 

/,•(«-, a(r, e),ß(r, e), 7(r, e), e) = /;(fi(r, e)) - /,-(r(r, e)),   i = 1,2,3. 

For simplicity, in the following, the subscript i will be omitted. 

For later use we state the following two identities: 

E «,„«*> = £(£ «.„_,)«* + 0(e"+") (6.3) 

and n 

M^(X>') = E n«*.^+-+t". (6.4) 
\t=l       /       *,,...,lt„=l»=l 

From (6.4) it follows that in the polynomial Sn=i d„hn(e) in e the coefficient of er is 

r n 

£d"       Jl       IIa*"     ifO<r<iV (6.5) 
n=l kl+ ■■■+fc„=r   3=1 

l<fc;<r 

while for r exceeding N it is 

X>   E   IK (6-6) 
n=l li+-t'»" »=1 

Since (X(t,e), Y(t,e), Z(t,t)) and (a(r, e), /3(r, e), 7(T, e)) satisfy the asymptotic relations 

(4.1a,b) and (6.2), respectively, we obtain, with (6.3), that 

X(eT,e) + a(r,e) 

= Xo(er) + a0(r) + E(*(er) + «iMK + 0(eN+1) 

= Jfo(O) + o0(r) + E(at(r) + £ ^^fV + 0(eW+1), 
Jfc=l 

and similarly that 

(6.7) 

(*-t)! 

*(«-, e) = X„(0) + E(E    St
({      )'* + 0(«W+1 )• (6'8) 

With (6.7), (6.8) and the analogous expansions for Y(er, e) + a(r, e), F(er, e), Z(fT, e) + a(r, c) 

and Z(er,e), we find that 

N 

fl(r,e) = n„(r) + ^nt(r)£* + (eN+1), 

jv 
(6.9) 

rfvi^. + ^r^' + n 
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<*t(T) + L.i=o      '    (t-,)!  

/ X0(0) + O0(T)\ 

fio(T)-      Z„(0) + 7„(r)      ■ n'M" 

I     y'"-''(o)r 

/A'o(0)\ 

Ä(T) + E?=o 

iJi=0 (t-i)! 

„t    y,"~''(o)r»- 
2^,=0 (t-i)! 

v*     z,(>"''(o)r'- 

V 

(6.10) 

(6.11) 

(6.12) 

and Ski is the Kronecker delta. It follows from (6.10) and (6.11) that 

/(er,a(r,f),/3(r,f),7(r,e),f) = /(fi(r,C))-/(r(r,f)) 

N N 

= /(fio(r) + £ SltfTV + 0(eN+i)) - f(T0 + E rt(r)f
l + 0(£

A'+1)) 
t=i t=i 

i=i J' \t=i / 

- /(r.) - E ^IT21 (f>(r)e'V + 0(f,V+1)- 
By collecting e<nml powers of € in (6.12), with (6.6) we find that the coefficient cr(r) of er, 

1 < r < AT, is: 

^) = t^  E  IWE™^  E  riruo 

-E™^ E nw 

(6.13) 
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Since, by (6.10), 
D/(fio(r))fir(r) = Dtf(a0(T))ar(r) + Ds/(Qo(r))/3r(r) + DJ/(n0(r))7r(r) 

+ "./(«.<*» g ^P + "./<«.«> g ^7^ (6,4) 

+ i?,/(no(r)) ]T Z,r ' i°y" + DJ{Üo(r))Srl, 
>=o       *■       '■'■ 

it follows from (6.13) that 

cr(r) = DI/(Jl„(r))ar(r) + D,,/(f20(r))/?r(r) + DJ(il„(r))lr(r) + Pr(r) (6.15) 

where 
Pr(r) 

=^/(fi„(o) E 
x\^x"+^/(Oo(r)) E ^y 

■=0 

+ D,f (Oo(r)) J2 Zia'iy + A/("o(r))*rl 
i=0 *• '' 

+ £^f^   E   lW)-E^   E   iW) 
^•-^(OJr*- 

: (D«/(fio(r)) - Dtf(To))Sri + (Dtf(Q0(r)) - DJ(V0)) E : 
(t-i)! 

+ (D,/(no(r)) - D,/(r0)) E y<a-0oi 

+(z>./(n0(r)) - D,/(r0))E viA, 
i=0 

(fc-t)! 

+^WM E nn,w-E^ E nr,M 
l<*j<r l<fcj<r 

which is a polynomial in ai,ßi,ii,...,ar-j,ßr-i,fr-i with the coefficients depending on 
ß'7(fio(r)), j = l,...,r and D'f(T0), (xf{0), ¥^(0), zf\0)), i,j = 0,1,.. .,r. The 
constant term in the polynomial Pr(T) is 

E(o7(no(r))-öV(r„))/j!    E    ür'.M 
'S'/S- (6.166) 

= E(D''/(no(T))-D'7(r0))pri(r) 
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whern 

Pri(r) = (6.16r) 

Obviously, by (6.11), the degree of the polynomial pr,(r) in T is < r. In other words, the 

constant term in the polynomial Pr is the sum of certain terms, each of which is a product of 

the factor of the difference between the derivatives of / at QO(T) and T0 and the polynomial 

Pi j(r) in r with degree < r. 

Now substituting (6.2) into (3.7a), with (6.15) we obtain that 

= ((/,(fi(r,*))-/.(r(r,e))) 

N 

= *{/i(fio(r)) - /,(r0(r)) + ^c<»(r)e
r} + 0(f

A'+1), 

£ 49r(T ■fr + 0(6N + 1) 

^ /2(n„(r)) - /2(r„) + £ c(
r
2>(rK + 0(f

N+1) 

0 = /3(«o(r)) - /,(r„) + £ ^»(r)^ + 0(*"+1), 

where 4 (T) is defined in (6.15) with / replaced by fit i = 1,2,3. Since 

/2<r0) = /2(*o(o),y„(o),z0(o),o) = o, 
/3(r0) = /3(A'o(o).r0(o),z0(o),o) = o, 

we find, by collecting terms with equal powers of e, that a0(r) = 0, because —^ = 0, o0(0) = 0, 

and ( since Xo(0) = (a, ) 

dßo(T) 

dr 
= /2(fo,V'o(0) + /30,Zo(0) + 7o,0), 

0 = Mto,Yo(0) + ßo,Zo{0) + 7„, 0), 

3„(0) = r,0 - y0(0),7o(0) = Co - Zo(0), 

(6-17)„ 
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= P»,r(r), 

and, generally, 

dar(r) 

dr 

^^ = DxMÜ0(r))ar + D9f2(Ü0(r))ßr + DJ2(Ü0((r)hr + P/j,r(r), (6.17),. 

0 = DJ3(ü0(r))ar + D,f3(ü0(r))ßr + DJ3(n0(r))lr + P7,r(r), 

<*r(0) = (r -C^r(O) = Vr ~ Yr{0),lr{0) = Cr " Zr(0) 

for r = 1,..., N, where Pa,r(r) = ^(r), and Pß,r(r), P-,,T(T) &Te defined by (6.16a,b,c) with 

/ replaced by f2 and f3, respectively. 

The systems (6.17)r, r = 1,..., N, are all linear systems in ar, ßr, fr- In particularly, the 

right side of the first equation of (6.17)r is independent of ar, ßr, jr, which means tha.t ar{r) 

can be obtained easily from the first equation of (6.17)r. The terms P£>>r(r), Pß:r(r), P^^T) in 

(6.17)r are polynomials in ai,/8i,7i,...,0!r_i,/?r_i,7r_i. Moreover, the coefficients of PCT(T) 

depend on r, /?o(r),7o(r), and (X0(0),r0(0),.Zo(0)) and the derivatives of (X{(t), Yt(t), Zt{t)) 

at t = Ofor i = 0,1, ...,r-l, while the coefficients of Pßir(r), P7,r(r) depend on T, /?o(r)>7o(T)> 

and (X0(0), Ko(0), Zo(0)) and the derivatives of (Xj(t), Yi-(t), Z,-(i)) at t = 0 for i = 0,1,..., r. 

Hence for r = 1,... ,N, P„,,.(T), Pß,r(r), P7]r(r), are known recursively, if (aP-i, A—1> 7r-i) 

can be obtained recursively for known (Xi(t), Yi(t), Z;(r)), i = 0,1,..., TV . The constant terms 

of these polynomials are the sum of certain terms, each of which is a product of the factor of 

the difference between the derivatives of /,- at (£0, Yo(0) + ßo(r), Z0(0) + 7O(T),0) and (f0, 

To(O), Zo(0),0) and some polynomial q(r) in r with degree < r. 

6.2. Properties of the expansion of inner solutions. With the outer solution 

(X(t,e),Y(t,e),Z(t,e)) of Theorem 5.1 we can apply the change of variables (3.6a,b) and 

construct the boundary layer problem (3.7a,b). For the study of the inner problem (3.7a,b) we 

impose the following assumption on the solutions of (6.17)0: 

Assumption (IV): 

(i) The initial value problem 

^P- = /»(&, n(0) + A Zo(0) + 7,0), 
0 = M(o, Yo(0) + A Z„(0) + 7,0), (6-18) 

,3(0) = b,     7(0) = c, 

corresponding to (6.17)o has for 

b = ijo - Yo(0) and c = Co - Zo(0) 
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a solution (/30(T), 7O(T")) defined on [0, oo) such that 

fio(r) = (&, Vo(0) + /3u(r), Z„(0) + 7u(r)) e Z> for all r > 0, and 

lim(/30(r),7o(r)) = (0,0). 
r—«OO 

(ii) The matrices 

C(T) = Dyh(üB(r)) - D,Mn0(T))(D,Mn0(T)))-1 DJ3(Q0{T)) 

are nonsingular for r > 0. 

Under the assumptions (I) - (IV) and with properly chosen £*, r = l,...,Ar, we shall 

prove in Proposition 6.1 that the system (6.17)r has a unique solution (ar(r),/?r(r),7r(r)) 

defined on [0, oo), r = 1,..., TV, and that this solution decays to zero exponentially as r —» oo. 

The following result provides sufficient conditions under which Assumption (IV) can be 

derived from Assumptions (I) - (III): 

Lemma 6.1: If for the initial conditions (£(e), 77(e), ((e)) of (1.1) the point (£o,*7o>Co) is suffi- 

ciently close, to the point (£0.^0(0),Z(>(0)), ^nen Assumption (IV) is a consequence of Assump- 

tions (I) - (III). 

The principal part of Lemma 6.1 is a direct consequence of Lemma 6.3 below which in turn 

can be proved by means of the following result: 

Lemma 6.2:  Let 

Ax + f(t,x) 
dx 

It 
where A 6 Rn x " is a real ( constant ) matrix for which all eigenvalues have negative real parts. 

Let f be real continuous for (xyt) G B(0, 6) x R+, where H+ = {t \ t > 0 }, and 8 > 0 is a 

small number, and let 

f(t,x) ~o{\x\)    as \x\ -* 0 

uniformly in t, t > 0. Then the identically zero solution is asymptotically stable. 

For the proof see, e.g., [CoLe]. 

Lemma 6.3: Let Assumptions (I) - (III) hold and consider the initial value problem (6.18) 

where the initial point (b, c) satisfies the constraint condition /a(£o» *o(0) + b, Zo(0) + c, 0) = 

0, and (Xo{t)-,Yo{t), Zo(t)) is the solution arising in Assumption (III). Then for sufficiently 

small |b|, \c\, the DAE (6.18) has exactly one solution (/3(r),7(r)) defined on [0,co), for which 

rfl(0) + ß(r) e T>y> Zo(0) + 7(7-) 6 Vx and 

lim(/?(r),7(T)) = (0,0). 
T—oo 
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Proof: By Assumption (I) the matrix Dzf3(£o,Yf>(0), Z0(0),0) is nonsingular, (y0(0),Z0(0)) 

is a point of the open set T>y X t>z, and we have f3(£o,Yo(0), Zo(0),0) = 0. By the implicit 

function theorem there are two positive scalars 6p and 6-, such that V"o(0) + B(0,6p) C T>y, 

Zo(0) + B(0,£7) C Vz, and that for any ß £ B(0,Sß) there exists exactly one 7 = </>(ß) £ 

B(0,6y) for which /3(6,>o(0) + ß,ZB(0) + 7,0) = 0. Since the functions /2 and f3 were 

assumed to be sufficiently smooth, we may expand them at the point (£o,*o(0),Z0(0),0) and 

write (6.18) as 

^M = Dyf2(^,Y0(0),Z0(0),0)ß 

+ D,MtB,Y0(0), Z0(0), 0)7 + F(ß, 7) (619) 

0 = iJ!)/3(&,lo(0),Zo(0),0)j8 

+ Dyf3(So,Y0(0), Z„(0), 0)7 + G(ß, 7) 

where F(ß,*/),G(ß,-y) = 0(|/?|2 + I7I2) as ß -» 0 and 7 -> 0. Prom the second equation of 

(6.19), it follows that 

7 = - (^/3(6,lu(0),Z„(0),0))-1D!,/3«o,ro(0),Zo(0),0)/3 

+ <WI2 + M2) 

which, with <^(0) = 0, implies that 

7 = 4,(ß) = 0(/3),        as ß -> 0. (6.21) 

Substituting (6.20) into (6.19) and using the asymptotic relation (6.21) we find that 

^- = Bß + R(ß). (6.22) 
ar 

Here 

B(/3)=F(ft7)-D!,/2(f„,y0(0),Zo(0),0)(ö2/3(^,Vo(0),Zo(0),0))-1G(/J,7) 

=0(|/?|2 + M2) = 0(l/5)|2), as 0-0 

and J5 = -S(O) is the matrix defined in Proposition 3.1 for which by Assumption (III) all 

eigenvalues have negative real parts. Thus by Lemma 6.2, 0 € B(0,Sß) is an asymptotically 

stable solution of (6.22), namely, for any 0 < e < Sß, there exists 6 < 6ß such that 

\ß(0)\<6    ( or |6| < Ä) 

implies that the solution ß(r) of (6.22) satisfies 

|/?(T)| < e   for all T > 0 
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and 

lim ß(r) = 0. 

Because ß(r) remains in the ball £(0, Sp) for all r > 0, if follows from the continuity of <j> Rnd 

fli(0) = 0, that 7(7-) = 4>(ß(r)) € fl(0,o7) for all r > 0 and 

lim 7(7-) = 0. 
T—'OO 

This completes the proof of Lemma 6.3.   | 

Proof of Lemma 6.1: We apply Lemma 6.3 to (6.17)0 to complete the proof of Lemma 

6.1. Lemma 6.3 ensures that when (r/0,(o) is sufficiently close to the point (Yo(0),Zo(0)) then 

IA)(0)|, |7o(0)| are sufficiently small and (6.17)0 has exactly one solution (PO(T), 7O(T")) defined 

on [0,oo) which satisfies 

lim(/3u(r),7o(r)) = (0,0) 
r—»oo 

and 

(Vo(0) + /?o('-),.Zo(0) + 7o(T))eI'!,xD!,     Vre[0,oo). 

It only remains to prove that the condition (ii) of Assumption (IV) holds. For this we can 

choose sufficiently small 60 and £., such that for all (ß,y) € B(0,Sg) x 5(0,6-,) the matrices 

r>z/3(6>,Ko(0) + /?,Zo(0) + 7,0), 

Dsh - DJ2(D J^-'D.f^o, Yo(0) + ß, Z0(0) + 7,0), 

arc nonsingular. This is guaranteed by the continuity of these two matrices and their nonsin- 

gularity at, (#,7) = (0,0). Then, for f = Sß there exists a S > 0 such that 

|/?„(0)| < c,      |7o(0)| < 6, 

implies that (/?0(T), 7o(r)) € B(0,6) x B(0,S) for all r > 0. Thus on the solutions ß0(r), I0(T) 

the matrices (6.23) are indeed nonsingular. This completes the proof of Lemma 6.1.   | 

(6.23) 

Lemma 6.4:   Under Assumptions (I) ■ (III), if the solution (A)(T),7O('")) of (6.17)0 satisfies 

the Assumption (IV), then there exists a positive o such that 

ßo(r) = 0(e ), 70(r) = O(e (6.24) 

Proof:   Since ßo{r)  —► 0,     7O(T)  —* 0 as r —* oo, for any given e > 0, we may choose a 

sufficiently large ru > 0 such that ßo(r) € B(0,£/)) and fo{T) € B(0,57) for all r > r0, and 

\R(ßo(r))\ < ( 
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where the function R is defined in (6.22). The equation (6.22) can be written as the integral 

equation 

/30(r) = e-Brßo(T0) + f e-B^R(ß0{s))ds. (C.25) 

Since the real parts of all eigenvalues of B are negative, it follows from Lemma 5.1 with 

A(t) = B and e = 1, that there exist positive numbers K and ß such that 

||e"flr|| < A'e-'"', for all r > 0. (6.2G) 

Note that here we use the fact that the fundamental solution <j>(t, s) of the equation 

is <f>(r}s) = e_(r_s>B, for 0 < s < T < oo. Hence (6.25) and (6.26) together show that 

\ßo(r)\ < e-*r|A,(r0)| + f-K f e-^-'~>\ß0(s)\ds 

or T 

e"T\ßo(r)\ < \ßoM\ + eA' /  e»°\ßo(s)\ds 

By Gronwall's inequality it follows that 

|/3o(r)| < |Ä(ro)|e-eA'r°e-("-<K)r (6.27) 

and with e = ^ and a = /*/2 we obtain from (6.27) that 

ß0(T) = 0(e'"T)      asr-too 

which, together with (6.21), completes the proof of Lemma 6.4.   | 

Lemma 6.4 shows that the first term of an inner solution of (3.7a,b) is negligible out- 

side the boundary layer, which also is a property of any inner solution of (3.7a,b). Since 

(ar(r), ßrir), 1T(T)), r = 0,1,..., JV, were derived as coefficients of an inner solution of (3.7a,b), 

we expect that all terms (ar(T),/3r(r),7r(r)), r = 0,1,... ,iV, possess this property, namely 

that , for r = 1,... ,JV, 

Urn (ar(r),/3r(r),7r(r)) = (0,0,0). 

This will be confirmed in the following Proposition 6.1 where also the existence and uniqueness 

of solutions (ar(T),^r(r),7r(r)) of the systems (6.17)r, r = 1,... ,N, is discussed. 
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By (6.17)r all coefficient, functions (o>, ßr, jr) satisfy a linear system of the form 

da      „ ,   v 

dß_ 
AT 

■■ A21(r)a + A22(r)ß + A23(T)~I + PI(T), (6.2S) 

0 = A3S(T)O + A32(T)ß + A33(r)l + P3{T), 

o(0) = o\     /?(0) = /T,     7(0) = 7*, 

for which 

(i) Ajj,Pj are of class C on [0,oo) and A33(T) is nonsingular for all r > 0; 

(ii) j4ipj are bounded uniformly in T € [0,oo) and the limit 

hrn^ (A22(T) - A23(r)A33
l(r)A32{r)) = B0 

exists ; 
(iii) the limiting matrix B0 has all eigenvalues remaining strictly in the left half plane. 

And the initial point («", /J", 7") satisfies the compatibility condition 

^31 (0)«* + A32(0)ß' + .433(0)7' + P3(0) = 0. 

For the system (6.28) we obtain the following result. 

Lemma 6.5:   Under the conditions (i), (ii) and (iii) the sj'stem (6.28) has exactly one solution 

(O(T), /?(T), 7(r)) defined on the interval [0, 00). Moreover, the asymptotic relations 

PJ(T) = 0(e'"r),      as T-too,    t = 1,2,3 

hold with some a > 0. Then 

a' = - /     P,(.s)rf.s < 00 
Jo 

and with this n' there exists a solution (O(T), ß(r), 7(1-)) of (6.28) that satisfies 

n(r) = 0(e-"'r), ß(r) = 0(er"'T), 7(1-) = 0(e~"T),       as r - 00. 

with some 0 < <?i < c . 

Proof: From the first equation of (6.28) we obtain 

O(T) = a' +  I Pi(s)ds. 

(6.29) 

(6.30) 

(6.31) 

Hence since, by assumption (i), A33(T) is invertible, it follows from the third equation of (6.28) 

that 
7 = -A3-3

1(T)(/l31(T)a + >l32(r)/? + P3(r)). (6.32) 
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Substituting (6.31) and (6.32) into the second equation of (6.28) we obtain 

^ = A(r)ß + 6(7-) (6.33a) 
ar 

where 

A{r) = A22{r) - A23(T)A^(T)A32(T), 

6(r) = P2(T) - A23(r)A33\r)P3(r) + (A21(r) - ^(rj^V)^.^))«!^. 

Since (6.33a) is a linear ODE with the coefficients denned on [0, oo) it follows from the basic 

existence theorem for initial value problems of linear ODE's that with the initial condition 

/3(0) = /?* the equation (6.33a) has a unique solution ß = ß(r) on [0, oo). Inserting ß = ß(r) 

into (6.32) we obtain the component 7 = 7(7-) of the solution for (6.28). This proves the first 

part of Lemma 6.5. 

For the rest of this lemma, note that because of 

P](r) = 0(e"'"'),      asr-»oo, 

the integral 

f Pi(s)ds 

exists. Then by choosing a* as in (6.29) we find that the solution a(r) has the form 

/oo 

P1(a)ds 

which implies that a(r) satisfies the asymptotic relation (6.30). Since Aij, i = 2,3, j — 1,2,3, 

are bounded uniformly for T > 0, and P2{T), Pair), a(r) satisfy the asymptotic relation 

P2(r) = 0(e-"), P3(T) = 0(e-'r), a(r) = Ofe""),   as r -> cx> 

it follows that 6(T) in (6.33b) satisfies the same asymptotic relation, namely 

6(T) = 0{e-°T). (6.34) 

Since by conditions (ii) and (iii), lim,-—00 A(T) = Bo and all eigenvalues of Bo remain strictly 

in the left half plane, there exist y! > 0 and T0 > 0 such that for any eigenvalue \{A(T)) of 

A{T) the inequality 

0c(A(A(r))) <-n' < 0,   V r > T0 

holds. Let *b(r,s) be a fundamental solution of the equation: 

- = A(r)$, 

$(7-, S)|r=,  = I, T0  < S < T. 
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From Lemma 5.1 with e = 1 we obtain the estimate 

$(<,s) = 0(e-*'('-')/2) 

Then for the solution ß(r) of (6.28), it follows that 

/?(T-) = *(T,0)/?*+   I   ${T,s)b{s)ds 
Jo 

= 0(c-i''T'2)+ f   0(E~i''<-'-,)/2)0{e-,")ds 
Jo 

= 0(c-'''^/2) + 0(c-,"■) 

= 0(e.-"r) 

where 

ai = min{<7, ///2} 

Hence (G.32) implies that the asymptotic relation 

7(r) = 0(e-"r) 

holds, which concludes the proof. | 

as r —v oc 

a.s T -» oo 

Proposition 6.1: Under the assumptions (I) - (IV), the system (6.1T)r has a unique solution 

(a,(r),/?r(r), 7r(r))T for r > 0 and r — 1,...,N. Moreover, there exist coefficients £*, r = 

1,..., N of the expansion (4.1a) of £*(e) and positive numbers oT such that 

ar(r) = 0(e-^V 

ßr(T) = 0(c-^) 

7r(r) = 0(C-"'') , 

.,JV (G.35) 

Proof: The first part of this proposition is a direct consequence of Lemma 6.5 since, by 

Assumption (IV), Dz/^(^(T)) is nonsingular for all r > 0 and by the derivation of the system 

(6.17), Pa,r(T), Pß,r{T) and P^IV(T) are well defined for r > 0 provided only the previous terms 

<*t(T), ßi{T), 7,(T"), i = 1,..., r — 1, are available. 

Hence it remains to show that with properly chosen coefficients £", r = 1,...,JV, the 

asymptotic relations (6.35) hold for all 0 < r < A7. This can be shown inductively by applying 

the methods used to prove the second part of Lemma 6.5. Indeed, Assumption (IV) ensures 

that the estimate (6.35) is valid for r = 0. Thus assume that there exist positive numbers 

<7],...,<7jt sucli that the asymptotic relations (6.35) hold for all 1 < r < k .   Note that the 
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coefficients Dx/K^oM), D,/i(i!oW), Z>«/I(«O(T)), i = 2,3, of the system (6.17)r are bounded 

uniformly in T for r > 0. From the derivation of the system (6.17)r we know that P0IH.I(T), 

P/3,*+i(r) and P1II+](T) are polynomials in »i, A, 71,..., a*, /3/t, 71 with coefficients depending 

on 7-, AW, 7o(0 and (Xo(0), K0(0), Z0(0)) and the higher derivatives of (^(t),Kj(t),Zj(t)) 

at / = 0. Moreover, for the constant terms of P0j/t+i(r), P/J,*+I(T) and P7T|J+I(T), it follows 

from (6.16b) that they have the form 

*+l 
£(fl'7(n„(r)) - D'7(r0))pl+lj(7) (6.36) 

where PH-IJ(T) >
S
 
a polynomial with degree < k + 1. Since 

Oo(r) - To : 

the difference /(H0(T)) - /(r0) has the rate 0(|/?0C")|+|7O(T)|) which, together with (6.36), 

implies that the constant terms of Paik+i(r), Pßtk+i(r) and P7)jt+i(r) all have the rate 

0((|A(r)| + |7o(r)|)p(r))     asr-oo (6.37) 

where p{r) is a polynomial of degree < k + 1. Recall that for any given small number e > 0 

and any polynomial pR(r), the limit 

lim pn(r)e~(T = 0 
T —*0O 

exists. Moreover, by Lemma 6.4, /?o(f ),7o(f) have the rate 0(e~UT) as r —* 00. Thus, with 

<r0 = CT/2, it follows from (6.37) that these constant terms have the rate 

O((\ßo(r)\ + |7o(r)|)p(r)) = 0(p(T)e-'r) = 0(p(r)e-"«r)e-'»T = 0(e~"r)     as r -* oo. 

Hence there exists a positive number <r^+] such that the following asymptotic relations hold 

Pa,*+i(r) = 0(e-"'^n I 
Pß,t+i(T) = 0(e~<+'T) I as r -> oo 

This implies that 

JO 
P„,i+i(r)dr 
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exists. Therefore, by integrating the first equation of (6.17)jt+i we see that 

AOO /-no 

ajfc+i(r) = £*+, - Ck+i +  /     P*k+\(fi)d* ~   /     P0k+i{*)dfi 

Accordingly, we choose 

« + ,  =6+1+   /      Pa,k+l{-l)d.1 
Jo 

(6.38) 

an + it7") : 
/OO fOO 

P»,t+i(*)^ = - /     0(e-'U.')«fs = 0(e-°'n-<T) as r —► oo 

and the asymptotic relation (6.35) holds for ajt+ifr). 

Since /?«(r), 7O(T) —» 0 as r —* oo, it follows that 

^m  {Dyf2(U0(r)) - D,MUo(T))(D,f3(Q0(T)))-'D,h(il0(T))} = B(0) 

where by Assumption (III) all eigenvalues of 5(0) remain strictly in the left half plane. Hence, 

by applying Lemma 6.5 to (6.17)/t+j, with £J+, chosen by (6.37), we obtain the existence of 

ffjt+i > 0 ( < Oj+i ) such that the other two components ßt+l(r) and 7i + i(r) satisfy the 

asymptotic relations 
ßk+1(r) = 0(e- 

7t+i(r) = 0(e" 

Thus altogether we proved that the existence of ££+1 and of at+J > 0 such that the asymptotic 

relation (6.35) holds for r = k + 1 and, therefore, (6.35) is valid for all 0 < r < N.   | 

as r —* co. 

6.3.   The procedure for generating outer and inner solutions.  The proofs of Lemma 

6.5 and Proposition 6.1 describe the procedure for the generation of the sequences £* and 

(Xr{t),Yr(t),Zr(t)),   r = l,...,iV 

(ar(r),/3r(r),7r(r)),   r = l N 

(6.39a) 

(6.396) 

which solve the systems (4.2)r and (6.17)r, respectively, and satisfy the asymptotic relations 

(6.35) provided the first terms (X0(t), Y0(t), Z0(t)) and (0,/90(T), 7O(T)) are available and 

satisfy Assumptions (I) - (IV). Suppose (Xr((), Yr(t), Zr(t)) and (or(r), ßr(r), 7r(r)) are 

available for all r < k and satisfy the requirements. Note that the polynomial Pn>+i(r) in 

«i,... ,7it depends only on the values of (Xr(t), Yr(t), Zr(t)) and their derivatives at t = 0 for 
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= 0,1,... ,k, and has the rate Pa,t+i(r) = 0(e~"k^T) as r -> oo. Thus Pa,t+i(r) is known, 

and furthermore 

■Pa*+l(T)<fr f 
exists. Then with {J+] specified by (6.38), with which we obtain the solution ak-t-\(r) of the 

first equation of (6.17)*+!. Prom the proof of Proposition 6.1, it follows that (n+1(r) satisfies 

the asymptotic relation (6.35). With the initial condition Xic+i(0) = £J+) we can find the 

unique solution (Xt+i(t), Yi+i(t), Z*+i(t)) of the system (4.2)j,+i. Only at this moment, 

Pßk+iir) and P7H+I(T) are fully determined because they depend not only on the previous 

solutions but also on the current one, (A"jt+i ,Yk+i, %k+\)- By inserting oj.+1 = at+i(r) into 

the last two equations of (6.17)t+], together with the initial conditions 

A+1(0) = 7,t+I - n+i(0),   7*+i(0) = Ct+i - Z*+i(0) 

we obtain the unique solution (/3i+i(r),74-1.1(7-)). In other words, our procedure has the 

following form. 

Procedure (A): Let (X0(t),Y0(t),Z0(t)) and (ßo(r),to(r)) be the solutions of the re- 

duced problem (3.1) and of the problem (6.17)0, respectively, which satisfy the Assumptions 

(I)- (IV). Forr = l,...,N, 

(1) solve the ODE 

to obtain otr(r) for 

«r(0) = ir~ £ 

Cr = tr +   /       PcAS)ds r +   /      Per 
JO 

(2) with the initial condition Xr(0) = £' solve (4.2)r to obtain the unique solution (Xr(t), 

Yr(t), Zr(t)); 

(3) insert C<T(T) into the last two equations of (6.1T)r, to obtain the unique solution (j8rM> 

7r(r)). 

Note that this procedure is indeed independent of the concepts of outer and inner solutions. 

But the sequences f J and (6.39a,b) generated by this procedure can be used to construct outer 

and inner solutions. Next chapter shows that inner solutions exist and can be expanded with 

(ar(T),/Jr(r),7r(T)) as coefficients. 

7. Existence of inner solutions 

7.1. Theorems of existences. The following theorem shows that the series 

N N N 

X>r(ry,     X>(rK,     £>(rK 
r=0 r=0 r=0 
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generated by Procedure (A) can be used to approximate an inner solution (a(r,e), 0(T, e), 

7(r,e)). 

Theorem 7.1: Under Assumptions (I) - (IV) suppose that the sequences £*, {Xr(t), Yr(t), 

Zr(t)) and(cvr{r), ßr{r), 7r(r)), r = 0,1,..., N, arc generated by Procedure (A). Let (X{t,e), 

Y(t,e), Z(t,e)) € T> for t £ [0, T] be the outer solution guaranteed to exist by Theorem 5.1 

which satisfies the initial condition 

oo 

and the asymptotic relations (5.1). Then there exists a unique solution (O(T, e), ß(r, e), 7(7-, e)) 

for the inner problem (3.7) on the interval 0 < r < T/t, for all 0 < e < t\, where t1 (< f0) is 

a sufficiently small number such that 

Y(t,() + ß{t/(,()evy, 

Z(l,0 + 7(t/M)€P„ 

for all t 6 [0, T] and 0 < ( < ej, and 

N 

a(r,f)-^ar(rK = 0(f
A,+ 1), 

r=0 
N 

/3(r,f)-^/3r(r)f
r = 0(f

A'+1), (7.1) 
r=0 

A? 

7(r,f)-X>(rK = 0(f
N+1), 

uniformly for 0 < r < T/f as f-»0. 

The proof of this theorem will be given after next theorem.    From Theorem 5.1 and 

Theorem 7.1 follows the main Theorem of this paper. 

Theorem 7.2: Let Assumptions (I) - (IV) hold. Then there exists an f> > 0, 0 < f> < f), 

where €\ is defined in Theorem 7.1, such that for all 0 < e < €2 the singularly perturbed DAE 

(l.la,b) has a unique solution x = x{t,(), y = y(t, e), z — z(i, e) in T> on the inter\ral 0 < t < T 

. Moreover, for any natural number N, there exist an outer solution (X(t,€),Y(t,(),Z(t,e)) 

6 T>, and an inner solution (a(r,€),/?(r, (),J(T, e)) such that 

x(t, <■) = X(t,f) + n(t/f, f), ;/(/, f) = Y(f, t) + fl(t/f, f), z(t, f) = Z(t, f) + -,{tIt. () 
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for 0 < t < T and 0 < e < e0. Moreover, the outer solution satisfies 

N 

X(t,e)-YlXr(r)er = 0(eN+1) 
r=0 

K(i,e)-£yr(rK = 0(<:W+I) 
r=0 
N 

Z(t,e)-Y,Zr(ry = 0(eN^) 

uniformly for 0 < t < T, where {Xr(t),Yr(t),Zr(t)) are determined by the system (4.2)r, 
r = 0,1,..., N, and the inner solution satisfies 

N 

a(</e,6)-^ar(«/eK = 0(£'
v+1) 

r=0 
N 

ß(t/e,e)-Ylßr(tMe'- = 0(eN+') 
r=0 

JV 

-,(t/e,e)-YJ7r(t/ey = 0(eN-») 
r=0 

uniformly for 0 < t < T, where (ar(
r)> A-M.TrM) are determined by (6.lT)r, and satisfy 

ar(r) = 0(e~"'r), ßr(r) = 0(e~"^), 7r(r) = 0(e~°'T),      ,   r = 0,1,..., N,     as r - oo 

for some or > 0. 

7.2. Proof of Theorem 7.1. In analogy to the proof of Theorem 5.1, the first step here 
introduces a change of variables into the inner system (3.7) in order to change it to a technically 
simpler form. Let u € Rm,v £ Rn,w e Rk be defined by 

a = u + Vj ar(r)cr, 
r=0 
N 

ß = V + Ylßr(T)<ir + A1(T)u, (7.2) 
r=0 

N 

T = W + Y1 ^^ + A2(r)u + •Bi(7>> 

where A^r), A2{T), and Bi(r) will be determined such that after the change of variables (7.2) 
the system (3.7) will simplify. At first we have to determine again a proper domain for the new 
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vnrinbles (u,i>,w>) such that the transformation (7.2) makes sense for the inner problem (3.7). 

For this recall that the inner system (3.7) was obtained by introducing the change of variables 

(3.6a/b) into (1.1) where (X(t,t),Y(t,e), Z(t,e)) is an outer solution. Thus the change of 

variables (7.2) in the inner system (3.7) is equivalent with the following change of variables in 

tin- original DAE (1.1): 

j = .Y(f,f) + u + ^ar(</f)er, 
r=<l 

N 

y = Y(t, t) + i> + Y, ßAt/cV + M (r/e)u, 
r=0 

N 

Z = Z(t,t) + W + Y,-rr(t/cV + M(th)u + B,{i/()v. 

(7.3) 

It will be shown that there is a small neighborhood 0, of (0,0,0) such that if (u, v, w) remains 

in Of, then (i,y,*) £ V where (x,y,z) is denned by (7.3). For this, we show first that under 

Assumptions (I) - (IV) there exists a sufficiently small 0 < f3 ( < f2 ) such that {Y0(t) +ß0{t/e), 

Z(i(0 + 7o(</<0) eVvxV, for all t e [0,T], 0 < t < e3. Indeed, since, by Assumption (IV), 

(lo(0) + ßo(r), Zo(0) + 7o(i-)) eP,«». for all r > 0 and Z>„, Vz are open sets, there exists 

t* e (0,T) such that 

(Yo(t) + ß0(t/e),Za(t) + 7o(</<0) eP,x T>„      for all t € [0,(*],0 < t < (7.4) 

On the other hand, since (Y0(t), Z0(t)) eVsxV, for all t G [0,T] and [0, T] is a closed set, 

there exists r > 0, independent of <, such that 

B(Y0{t),r) x ß(Zo(<),r) CP,x V„   W 6 [0,T], 

From limr_00(/?o('-),7o('-)) = (0,0), we find that there exists 0 < t\ (< t3) such that 

\ßo(t/c)\<r,   \lo(t/t)\<r,    V(e[r,T],0<f<f'3, 

Hence (7.5) and (7.6) show that 

(Yo(t) + ß0(t/€),Z0(t) + 7o(*A)) £ P» x *>*-      f°r a11 ' € [<M1,0 < c < *'3, 

which, together with (7.4), means that 

(Y0(t) + ß0(t/e), Zo(t) + 7o('A)) € Vy x V„      for all t € [0, T],0 < c < *',. 
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By Theorem 5.1, the estimates 

X(t,e) = X<,(t) + 0(e)} 

Y(t, e) = K„(t) + 0(e)   1      as t -* 0, (7.9) 

Z(t,e) = Z0(t) + O(t) J 

hold uniformly in t E [0,T]. Therefore, (7.8), together with (7.9), implies that there exists 

€4 > 0 (< £3) such that 

(X(t,e),Y(t,e) + ß0(t/e),Z(t,e) + l0(t/t)) eVxxVyx Vz,   Vt e [0,t*],0 < e < et.   (7.10) 

Note that (a;(t/e),/?;(«/<:), 7i(*/<0), i = 1,...,JV, are uniformly bounded for all t € [0,T] 
and 0 < e < ei. Moreover, suppose that AI(T),A-;(T) and Bi(r) are uniformly bounded for 

0 < T < T/e. Then there exist c5 > 0 ( < e4 ) and 6 > 0 such that for any (u,t>,u>) 6 

B(0tS) X B(0,<5) X B(0,6), the point (x,y,z) defined by the transformation (7.3) is contained 

in V for all * € [0,T] and 0 < e < e5. We write Vu = B(0,6) C Rm, Vv = 5(0, <5) C R", 

Vw = J3(0, S)cRk, and P = B,xP,xP». 

The change of variable (7.2) is now introduced in (3.7).  For abbreviation, the notations 

Oi(r), r,-(r) denned in (6.10) and (6.11) will be used again. Furthermore, set 

// 0        0    0\ /u\ 

A,(r)        I       0    0 I        u=\V\. 
A2(r)    B,(r)    I    0 

K    0 0       0    1/ \0, 

Then 

and 

= fio(r) + ^^(TK + AW + ^-f1"- <0 (7-n) 

where i2n(r,e) = 0(eN+1) is independent of (u,v,w). Thus, by expanding /(H) and f(T) at 

fio(T) and r0, respectively, we obtain 

W) - /(r) 

- /(n,(r)) + ]T ^^ T» (^Qt(r)€* + A(T)U)   + R(r,u,v,w,e) 

1=1 ■'' \t=i  / 

(7.13) 
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As a remainder term, R(r, u, v,w, f) satisfies 

(i)     J?(i/f,0,0,0,<0 = O(eN),    ase->0 

(Ü) 

DuR(t/(,u,v,xv,e) = 0(e + |u| + |i>| + \w\) } 

DvR(t/f,u,v,w,() = 0(( + \u\ + \v\ + \w\)   \     ase,|u|>|,M - 0 

DwR(t/e,u,v,w,e) = 0{( + \u\ + \v\ + \w\) J 

(7.14a); 

(7.146) 

uniformly for 0 < f < T. 

Moreover the remainder term H(T,(.) = 0(fN+1) satisfies (7.14a,b) as well.   Obviously, the 

conditions (7.14a,b) are exactly the same as Condition (N). It follows from (7.13) that 

/(fi) - /(r) 
N 

= /(fio(r)) - /(r„) + YJ
C'(T + Df(Uo(r))A(T)U + G(T,U,V,W,C) 

(7.15) 

where cr is as defined in (6.15) and 

G(T,u,v,tv,e) = R(T,u,v,w,e) + 0(€N+1)-H(T,t) 

>=2 J' \fc = l / \* = 1 / 

Under our assumption that A(T) is uniformly bounded on 0 < r < T/f, we see that 

j=2 ■'' \t = l / \t=l / 

satisfies (7.14a,b). Since the Condition (N) also holds for R(T,ti,v,u>,e), 0(f*'+1), tf(r, e), 

this implies that G(T,U, v,w,e) satisfies Condition (N) as well. 

Substituting (7.2) into the first equation of (3.7a) we obtain 

aV+£«Vr = f(/|(fi)_/i(r)) 

r-0 (7.16) 

= f[/i(fio(r)) - /,(r„) + Y,crf" + Df,((l0(T))M] + G,(7-,i/,iMr,f). 
r=l 

Since O,(T~) satisfies the first equation of (C.17)r, it follows from (7.16) that 

du 

dr 
■ (Dfdü0(T))A(T)U + Gi(r,u,v, w,e) (7.17) 
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where G\ satisfies (7.14a,b).   Similarly, substituting (7.2) into the second equation in (3.7a), 

and utilizing the fact that ßr{r) is the solution of (6.17)r, r = 1,..., N, we see that 

dv       ., .  . J   .  . du 
- + A\(r)u + Mr)- (71g) 

= Df2(Uo(r))A(T)U + Gm(e, u,v,w, T) 

where G(2)is denned by (7.15) with / replaced by /2. Obviously, the function on the right side 

of (7.18) satisfies (7.14a,b). Thus 

G2(e,u,v,w,r) 

= -eA1(r)£l/1(fio(r)M(r)W-A1(r)G1(r,«,«,«;,e) + G(2)(e,«, V,W,T) 

satisfies (7.14a,b) as well, and it follows from (7.18) that 

(7.19) 

^- = Df2(Ü0(r))A(Tp-A'1(T)u + G2(e1u,v,w,T). (7.20) 
(XT 

Finally, substituting (7.2) into the third equation of (3.7a), we find that 

Df3{Qo(T))A(r)U + G3(T,u,v,w,e) = 0 (7.21) 

where G3 is defined by (7.15) with / replaced by f3. 

Note that from the derivations of the equations (7.17), (7.20) and (7.21), we see that the 

functions G;, i = 1,2,3, are well defined on V x (0, e5]. Now we show that there exist matrices 

M(T), A2(T) and B-,(T) which are uniformly bounded on 0 < r < T/e and for which the 

equations (7.17), (7.20) and (7.21) simplify considerably. For this, we write 

Df2(ilo(T))A(T)U - A\{T)U 

= [Dtf2(Sl0(r)) + Z}„/2(fi0(r))A1(r) + DZ{2{ü0(T)A2(T) - A\(T)]U 

+ [Dyf2{ü0(T)) + r>2/2(fio(r))B,(T)]i; + DJ2(ü0(r))w 

and 
Df3(ü0(r))A(r)U 

= [Dxf3(Slo(r)) + DyMSloiT^AiiT) + D J3((10(T)A2(T)]U (7.22) 

+ lD,f2(ilo(T)) + K,/3(no(7-))B,(r)]u + DJ3(QO(T))W, 

and use the equations 

DJ2(n0(r)) + D9/2(fi0(r))A1(r) + DJ2(n0(r))A2(r) - A\(T) = 0, 

DJ3(ü0(T)) + D.MCloir^A^T) + DJ3(S10(T))A2(T) = 0, (7.23) 

DJ3(Q0(T)) + DJ3(n0(T))B, (r) = 0, 
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to determine AI(T), A2{T) and Bi(r). In order to show that the solutions -4I(T), A2(T) and 

Bi(r) of (7.23) an: uniformly bounded for 0 < T < T/e, note first that the third equation of 

(7.23) gives 

B,(r) = -(DJ^Clolr)))-1 D„f3(ü0(r)) 

which is obviously bounded for 0 < r < T/(. Indeed, there is a constant C, independent of r 

and e, such that ||Bj(r)|| < C for all r > 0. The second equation of (7.23) now provides that 

A2(r) = - (DJ3(na(r)))-' (Dzf3{Q0(r)) + D^CMT))^^)). 

By substituting this into the first equation of (7.23) we obtain that 

d 

rfr 
AAr) = M(T)MT) + C(T) 

vhi 

Because of 

M(T) = DJ2(U0(T)) - DJ2(QO(T)){DJ3(QO(T))) D,f3(Slo(r)), 

C(T) = D,M<10(T)) - DJ2(Q0(r)) (DJ3(na(r))) DJ3(n0(r)), 

lim M(T) = /J(0) 

(7.24) 

(7.25) 

(7.26) 

and Sc(A(B(0))) < 0 for all eigenvalues A(B(0)) of B(0), tliere exists a T0 > 0 such that all 

eigenvalues of M(T) remain strictly in left half plane for r > r0. Thus if -4j(r) is chosen as the 

solution of (7.25) that, satisfies the initial condition Ai(0) ~ I, then Lemma 5.1 ensures that 

A](T) is uniformly bounded in r, r > 0. With this Ai(r) it follows directly from (7.24) that 

A2(T) is uniformly bounded in r as well. 

Note that 

N 

u(0, e) = a(0, f) - ^2 Qr(0)f' 

= «o-no-X>-^)fr 
r=0 

= ß1(f) = 0(fA'+,), 
N 

i;(0, f) = /?(0, f) - £ /3r(0)f
r - 4,(0)«(0, f) 

r=0 

= e2(f) = o(f
N+1), 

N 

i«(0, f) = 7(0, f) ~ Y, fr(°y - ^(0)u(0. t) - B, (0)i'(0. f) 

= e3(0 = o(<N+1)- 

(7.27a) 

(7.276) 

(7.27c) 
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Therefore, with these specially chosen Ai(r), A2(r) and SI(T), it follows from (7.17), (7.20), 

(7.21) and (7.27a,b,c) that (3.7) becomes 

— = eiCiMu + L,(T)V + J5J(T)U>) + eGi(e, u, V,W,T) 
dr 

— = M(T)V + EI{T)W + G2(e, u,u,u;, T) 
dr 

0 = E3(T)W + G3{€,U,V,W,T) (7.28) 

u(0,e) = 61(e) = O(eN+J), 

t,(O,<:) = 02(e) = O(e<v+,), 

U)(0,e) = e3(e) = O(eN+1). 

This is equivalent to the following integral equation 

u(r,e) = $(r,0,e)oI(e)+ /   ifr.s.eWI.^Ms.eJ + ^fsVf»^) 
Jo 

+ Gi(e, u(s, e), f (5, e), w(s, e), s))ds, 

l)(T,c) = *(r)ö2(e) + *(r) /    <t-i(s)(E2(s)w(s, e) 
Jo 

+ G2(e, u(s, e), u(s, e), u>(s, e), s))ds, 

to(r, e) = -£3
_1(r)G3(e, «(T, e), v(r, e), W(T, e), r), 

where 

(7.29) 

C,(r) = D./i(n0(r)) + JVi^oM^r) + r>,/,(fioMM2(T), 

Li(r) = D,/i(fio(T)) + Ur/i(Qo(r))5i(r), 

£i(r) = D,/,(n0(r)),   £2(r) = D2/2(n„(r)),   £3(r) = D2/3(fi„(r)), 

and <$(r, s,e) satisfies 

-V^'^'-'1 (7.30) 
*(r,«,£)|r=, = / 

while *(T) is a solution of following system 

^ = M«* (7.31) 
*(0) = /. 

It turns out that $(T,s,e), *ff(r) are uniformly bounded for 0 < s < T < T/e and 0 < e < e0- 

Indeed, because Gi(r) is uniformly bounded for all r > 0, there exists a constant C > 0 such 

that |Ci(r)| < C for all r > 0. Thus from 

*(?-,*,e) = J+e /   Ci(A)$(A,s,e)dA 
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it follows that 

||*(T,a,e)||<l + eC /   ||*(A,.s,e)||</A 

which by Groiiwall's inequality implies that 

||*(T,a,e)|| <efC{T~s) < eCT 

for all 0 < s < T < T/c. Hence $(r,s,e) is uniformly bounded for 0 < s < r < T/e. 

For the matrix M(r), there exists a positive number ft such that 

K(A(M(r))) < -/i,     T > r0 

holds for all eigenvalues of M(T). Hence by Lemma 5.1 ( with e = 1 ) it follows that 

||'t(r)(^(.s))-1|| < Ke-^-'V2 

holds for 0 < 5 < r, where A* is a constant which is independent of ,s,r. 

Now we show that (7.29) has a unique solution (u,v,w) for which 

ti(T,«) = 0(«N+I), t;(r,f) = 0(eN + 1), w(r,e) = 0(fN+1), 

uniformly for 0 < r < X/c. 

With the change of variables 

0(f,f) = »(r/f,f), 

w(t,f) = w(t/e,e), 

T = l/f,       S  = .S  /6, 

the constrained integral equation (7.29) becomes 

ü(t,0 = *(<,0,e)9i(e)+ / *(<,*',0(£i(s'A)'Hs'.0+ £>(«'AM^O 
Jo 

+ G, (e, ü(s',«), ti(«', f), *(«', e), s'))ds' 

(7.32) 

«(<,f) = *(<, 002(0 + 
Jo 

'-(E2(s'/e)w(s\() 

where 

+ G2(f, ii(.s', 0> '"'(■'', 0. "'(*'. 0. s'))ds' 

ü{t,e) = -JE3-1(</0G3(f,«(<,0,''('.0."'(',0.') 

*(<,*',0 = *(*/e,s/e,e) 

*(«,0 = *('A) 
G,(f,t';,t"', ""',<) = Gi(f,u,v,w,t/c),       for i = 1,2,3. 

(7.33) 

(7.34) 

(7.35) 
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Because of (7.33) the kernel in the second equation in (7.35) satisfies 

\\*(t,e)*-\s',e)\\ < Ke~tilzr1 (7.36) 

for all 0 < s' < t < T. Moreover <£(«, s', e), L^s'/e), Ei(s'/e), i = 1,2,3, are uniformly bounded 

inO<s' <t <T. Since G,, i = 1,2,3, satisfy (7.14a,b), we see that Gi(t,ü,v,w,t), i = 1,2,3, 

satisfy the Condition (N). Now, with the same notation as in (5.15) we rewrite (7.25) in 

the form of constrained systems of integral equations as the one in [Ya2]. Then Theorem 1,2 

in [Ya2] guarantee that the system (7.35) has a unique solution (u(t,t),v(t,e),w(t,e)) on the 

interval 0 < t < T for which 

N+u 

uniformly on 0 < t < T. Hence the system (7.29) has a unique solution (U(T, e), V(T, e), io(r, e)) 

on the interval 0 < T < T/t which satisfies the estimate (7.34). This completes the proof of 

Theorem 7.1.   | 
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